Atlas de histología vegetal y animal
Inicio » La célula » Membrana celular » Permeabilidad, fluidez
La célula. 3.Membrana celular

PERMEABILIDAD, FLUIDEZ.
« Proteínas Asimetría, fusión, reparación »
Semipermeabilidad.

Las moléculas cargadas tienen dificultades para cruzar las membranas.

Permite crear ambientes moleculares diferentes separados por ella.

Permite la creación y utilización de gradientes.

Fluidez.

Las moléculas de la membrana pueden moverse lateralmente.

La fluidez afecta a la funcionalidad de la membrana y de sus moléculas.

La movilidad lateral de las moléculas puede restringirse por interacciones con moléculas externas o con otras moléculas de la propia membrana.

La composición química de las membranas hace que posean unas propiedades esenciales para las funciones que desempeñan en la célula. Podemos agrupar dichas propiedades en cinco: semipermeabilidad, asimetría, fluidez, reparación y renovación.

Semipermeabilidad

Esta propiedad se debe al ambiente hidrófobo interno de la membrana creado por las cadenas de ácidos grasos de los lípidos, difícil de cruzar por las moléculas con carga eléctrica neta. Esto permite a las membranas crear compartimentos o mantener separados el medio intracelular del extracelular y, por tanto, impedir la libre difusión de numerosas moléculas a su través. Sin embargo, la permeabilidad es selectiva. Así, moléculas pequeñas sin carga, por ejemplo el CO2, N2, O2, o moléculas con alta solubilidad en grasas como el etanol cruzan las membranas prácticamente sin oposición, por difusión pasiva. La permeabilidad de la membrana es menor para aquellas moléculas con cargas pero globalmente neutras (el número de cargas negativas iguala al de cargas positivas) como el agua o el glicerol. Se podría pensar que el agua difunde libremente por las membranas pero no es así y por ello en determinadas membranas existen unas moléculas denominadas acuaporinas que facilitan el cruce de la membrana por parte del agua. Es menor aún la capacidad de atravesar la membrana para moléculas grandes neutras pero con cargas, como la glucosa. Sin embargo, es altamente impermeable a los iones y a las moléculas que también carga neta.

Movimientos

El cruce de la membrana por parte de las moléculas depende de su tamaño y de sus características eléctricas (Modificado de Alberts et al., 2002).

La desigual distribución de iones y moléculas entre ambos lados de la membrana es la base para la creación de los gradientes químicos y eléctricos. La medida de esa diferencia de concentración de cargas es lo que se llama potencial de membrana, que se usa para muchas funciones celulares, como por ejemplo la síntesis de ATP o la transmisión del impulso nerivioso. La semipermeabilidad de la membrana también permite el fenómeno de la ósmosis, es decir, el flujo de agua hacia donde más concentración de solutos haya. Las células vegetales deben su crecimiento a este proceso. Como veremos más adelante, las moléculas que no cruzan las membranas libremente son interesantes para las células puesto que la variación de sus concentraciones a un lado u otro de la membrana puede actuar como señales o como herramientas, por ello se han inventado proteínas integrales de membrana que permiten selectivamente el paso de estas sustancias de un lado al otro. Por ejemplo, la contracción muscular se debe a una rotura de ese gradiente eléctrico.

Fluidez

Movimientos

Movimientos que pueden sufrir los lípidos en las membranas gracias a su fluidez. Los movimientos flip-flop son muy raros para los lípidos y no se han documentado para las proteínas.

Es la capacidad de una molécula que forma parte de una membrana para desplazarse por ella. Las membranas son fluidas, prácticamente son láminas de grasa, donde las moléculas se encuentran en un estado de líquido viscoso. Esto implica que, en teoría, las moléculas podrían difundir y desplazarse por ella sin restricciones. Consideremos un glicerofosfolípido que está situado en la membrana plasmática en su monocapa externa. Tendría dos posibilidades de movimiento: uno lateral donde se desplazaría entre las moléculas contiguas, y otro en el que saltaría a la monocapa interna, movimiento denominado "flip-flop". Los dos tipos de movimientos se han demostrado experimentalmente en membranas artificiales pero uno es más frecuente que el otro. Una molécula lipídica puede recorrer 30 micras en unos 20 segundos por difusión pasiva lateral, es decir, podría dar la vuelta a una célula de tamaño medio en aproximadamente un minuto. Sin embargo, los saltos entre monocapas son muy infrecuentes, se estima que la posibilidad de que le ocurra a un lípido es de una vez al mes debido a que las cabezas polares de los lípidos se encuentran con la barrera de las cadenas de ácidos grasos. El colesterol posee, sin embargo, la capacidad de hacer movimientos "flip-flop" con relativa facilidad.

La fluidez de la membrana puede variar con la composición química de sus componentes. Así, generalmente, la menor longitud o la mayor cantidad de enlaces insaturados de las cadenas de ácidos grasos hacen que las membranas sean más fluidas. El colesterol también inluye en la fluidez de la membrana, pero su efecto depende de las condiciones de temperatura y composiciĆ³n lipĆ­dica. En general se puede decir que mayor concentración de colesterol disminuye la fluidez de la membrana plasmática (aunque a bajas temperaturas favorece la fluidez). Por tanto, las células pueden alterar la fluidez de sus membrana modificando la composición química de éstas. Por ejemplo, algunas bacterias son capaces de aumentar la concentración de ácidos grasos insaturados (dobles enlaces) a temperaturas bajas, mientras que cuando suben los cambian por ácidos grasos saturados. La bajada de la temperatura disminuye la fluidez de la membrana.

Movimientos

Los movimientos de las moléculas pueden estar restringidos por las interacciones directas con la matriz extracelular, con el citoesqueleto, aunque también se pueden limitar los movimientos por la inclusión en las balsas de lípidos o por la disposición del citoesqueleto (imagen de la derecha).

Podríamos pensar que las proteínas integrales de membrana también tienen la posibilidad de una libre difusión lateral. Se ha comprobado que las proteínas tienen numerosas restricciones a la movilidad, principalmente por culpa de las interacciones de sus dominios intra y extracelulares con moléculas del citoesqueleto y de la matriz extracelular, respectivamente. Estas interacciones anclan por tiempos más o menos prolongados las proteínas de membrana a lugares concretos de la superficie celular. Las células tienen otros mecanismos para confinar proteínas a determinados dominios celulares. Por ejemplo, en las células epiteliales del digestivo ciertos transportadores y enzimas están localizados sólo en la zona apical y otros en la basal gracias al cierre a modo de cinturón que realizan las uniones estrechas, como vimos en el capítulo dedicado a la matriz extracelular. Tal asimetría es esencial para el funcionamiento de la célula epitelial.

Recientemente se ha postulado una restricción adicional al movimiento de las moléculas en las membranas de las células: las interacciones y asociaciones moleculares entre las propias moléculas de las membranas. Los esfingolípidos y el colesterol se pueden asociar entre sí espontáneamente haciendo que su movilidad disminuya y por tanto se conviertan en una región membranosa más densa que el resto, como si de una balsa en un mar se tratara. Se cree que estas asociaciones, denominadas balsas de lípidos ("lipid rafts"), son muy abundantes y dinámicas y hacen que las membranas celulares sean en realizad un mosaico de dominios más densos que viajan entre los glicerofosfolípidos, más fluidos. Hay experimentos que apoyan la idea de que ciertas proteínas tendrían mayor apetencia por estas balsas y por tanto viajarían en el interior de ellas. Este confinamiento de proteínas en dominios celulares es importante puesto que permitiría agrupar o segregar conjuntos de proteínas que favorecerían o no el inicio de cascadas de señalización intracelulares. Además, se postula que la alta concentración de ciertos tipos de lípidos en dichas balsas crea un ambiente químico propicio para determinadas reacciones químicas o interacciones moleculares. Por ejemplo, se cree que la infección de los linfocitos por parte del virus del SIDA necesita la existencia de dichas balsas de lípidos. En cualquier caso tales dominios de esfingolípidos y colesterol sólo se han postulado para la monocapa externa de la membrana plasmática, aunque también se propone su existencia en las membranas de los orgánulos celulares donde algunas funciones del propio orgánulo estarían segregadas en distintos dominios de sus membranas.


« Proteínas Asimetría, fusión, reparación »
Inicio » La célula » Membrana celular » Permeabilidad, fluidez Descargar membranas en pdf
Actualizado: 2008-09-18